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ABSTRACT

This research investigates tunneling between a metal

and silicon separated by an insulator (MIS structure) and de-

velops a model describing the MIS current-voltage character-

istics. Analysis shows that any model for MIS tunneling must

consider the density of surface states and the formation of a

depletion or accumulation layer in the silicon. The model

shows that the electric field in the insulator controls the

MIS current while the charge distribution in the silicon de-

termines the insulator field.

For the experimental results presented in this re-

port a polymerized silicone film formed the insulator. After

establishing the technique of forming the polymer, metal -

insulator - metal (MIM) junctions enabled study of the elec-

trical properties of the polymer and characterization of MIM

tunneling currents. The MIM characteristics permitted com-

parative analysis with MIS structures.

The experimental MIS curves on both N and P type

silicon show the exponential dependence of current on voltage

and they indicate that the mechanisms for MIM and MIS tunnel-

ing are quite similar. An asymmetric saturation of the MIS

tunneling occurs. This is shown to be caused by the forma-

tion of a depletion layer on the semiconductor which forms
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after completely charging the surface states. Experimental

evidence verifies this model. The distinct roles played by

the surface states, the depletion layer, insulator thickness,

temperature and the work function of the field plate metal

appears in the analysis.
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CHAPTER I

Introduction

A. Tunneling Through an Insulating Barrier

Tunneling is the quantum mechanical phenomenon which allows

electrons or holes to pass through an energy barrier. This differs from

classical mechanics which requires the electron or hole to jump over the

barrier (Schottky emission). 8 Fig. i illustrates these two processes,

Energy V(x)

e-

(a)

(b)

s Energy Barrier

r

X
av

Figure 1. The two methods of overcoming a potential barrier.
(a) The electron must gain energy to jump the

barrier (Schottky emission).
(b) The electron passes through the barrier

(tunneling).

For the case of tunneling, consider a wave packet (an electron or hole)

traveling toward a potential barrier. Schr_dinger's time-independent wave

equation 9a describing the wave traveling in the x direction is:

(I) + KLE : o
dx 2

Where E is the expectation value or average of the total electron energy

and V(x) describes the shape of the potential barrier. The wave packet
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is of finite length and therefore is a summationof sine waves. To

simplify the problem assumethat the sumof all the wave packets striking

the barrier takes the form of a single frequency sine wave of infinite

extent.lO, II If the average energy of the wave striking the barrier is

less than the barrier height then the wave will be partially reflected

and partially transmitted. Fig. 2 illustrates the form of the solution.

Energy

eVo

Figure 2.

eVB

E>eV0 E<eVB E>eVo

Form of the solution to Schr_dinger's equation.

If V (x) is a constant as shown in Fig. 2 then the solution to

Schrb'dinger's equation is a sine wave on both sides of the barrier; with-

in the barrier, the solution is a decaying exponential of the form:

(2) _exp [_ (E -eVB)I/2x _

eVB>E

If V (x) is not a constant, which is the case for externally applied bias

and solid dielectrics, then no closed solution of Schr_dinger's equation

can be found. 12 An approximate solution commonlyused, appears below.13

Starting with Schr_dinger's equation

(3) @" + 2m[E-eV(x)], : O,
i_2

where the primes indicate differentiation with respect to

X.



(4) and assuming _u = A(x) exp (i S(x)) : exp (iW),
_-- fF-

where W : S +i_ In A,
"C""

1

one obtains by substituting Eq. (4) into Eq. (3);

(5) (S')2 + ____S' d__d_ (In A)-li 2 dF, In Al2 +2mFE-eV(x)q :

i dx _ _Idx | L

-S" -I_2 d2 (In A).

i dx 2

Noting the identities:

(6) d (In A) = A'
dx A

(7) d (A') = AA" - (A') 2 ,
dx A Az

and substituting them into Eq. (5) and equating real and imaginary parts

yields the following two equations:

(8) (S') 2 - 2m (E -eV(x)) =_2 A" (real parts)

(9) 2A'S' + AS" = 0 (imaginary parts).

Eq. (9) is a form of the continuity equation which when solved yields:

(10) A = K (S')-I/2 where K is a constant

Substituting Eq. (10) into Eq. (8) gives:

: I I ll(II) (S') 2 2 mF(E - ev(x)] + 3 (s")2 1/2
Q

Eq. (4) is a solution to the initial SchrSdinger equation if Eq. (11) is

satisfied. However, only an approximate solution of Eq. (11) is possible.

The commonly used WKB approximation appears below.

Expanding S in powers of_2 gives:

(12) S = So +_2S I +_4S 2 + ...

S' = So ' +_2S{ + ...

S" = So" +_2 $1,, + ...



Substituting Eq. (12) into Eq. (11)

(13) (So, _ _2S_ + ...)2 = 2m (E - V(x)) +

I...........
Arbitrarily dropping terms in_ 2 and higher, Eq. (13) becomes:

(14) (S')2 = (SO, )2 = 2m [E -eV(x_.

(15) Thus S_ = [2m (E _V(x)_I/2 ,

(16) and SO = ±j_2m _eV(x) _

I/2dx"(E

Substituting Eq. (16) back into the assumed solution of Eq. (4),

yields for the solution inside the barrier:

(17) _ = constant exp I-_ fE 2m (eV(x)- Ex)]I/2dx]

This exponential term is called the transmission coefficient, D(Ex).

To find the current tunneling from one side of a barrier, the

number of electrons which inpinge upon the barrier per second is multiplied

by the transmission coefficient, D(Ex).9c

(18) dJ x = evxD(Ex)dN = ev x D(Ex) n(Vx) dv x

where :

Jx = current density in the x direction

e = electronic charge

vx = velocity in the x direction

D(E x) = transmission coefficient

n(v x) = probability density function

n(v x) dv x = dN = the number of electrons per unit volume

with velocity between v x and v x + dv x.



In terms of the Fermi function, 14 f(E),

4_m2

(19) n(Vx)= h3 o_ f(E) dEt

where: Et = 1/2 mvt2, vt2 = Vx2 + Vy2.

Therefore the current tunneling from one side of the barrier is-
Em

4_em So(20) Jx : h3 D(Ex) dEx _ f(E)dEt

where Em = Emax = the maximumelectron energy in the

electrode.

For the case of two metals separated by a thin insulator, there is tunnel-

ing from both sides of the barrier. 14, 15 The net current is the sumof

the two currents.

4xem m
(21) Jx = h3 D(Ex)dEx _f(E) - f(E + eV dEt

where the energy of the second electrode has been shifted

by an external bias voltage, V.

The general form of Eq. (21) suffices for most authors 14-22 as

the starting point for the derivation of the tunneling current of a thin

MIMsandwich. The main difference between the various tunneling analyses

is in the approximation of the transmission coefficient, D(Ex). The two

basic methods of approximation are found in the works of Simmons20 and

Stratton. 18 Hartman19 compared these works for asymmetric trapezoidal

barriers and finds "surprisingly good agreement between them." Simmons'

tunneling equation is explicit in the physical parameters of the tunneling

junction while the constants of Stratton's equation only imply these

parameters.

The equations of both Simmonsand Stratton have been found by

a number of authors to adequately describe tunneling through oxide films.
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Stratton's equation more closely describes the experimental Al-polymer-Al

tunneling characteristics of this research. An analytical expression de-

scribing MIM tunneling is desired in order to conveniently comparevoltage-

current characteristics of MIS with MIMjunctions. Since there exist no

physical criteria upon which to choose one tunneling equation over another,

Stratton's equation is selected as the analytical expression to describe

the observed tunneling through the polymer. This is not to say that

Stratton's equation is more correct than other tunneling equations, but

rather that the manner in which the transmission coefficient is approxi-

mated more closely describes the tunneling parameters of the polymer film.

An outline of Stratton's MIMtunneling equation appears below.

Stratton starts with Eq. (22) which is a form of Eq. (21),
E

4em/ __(22) J = h3 _I (E) - f2 (E dE D(Ex)dEx,
o 0

x2

(23) where D(Ex)= ex p I-_S_ (x,V)+ EF - E_/2dx,

Xl

x I and x 2 are the values of x where (x) = Ex (the

classical turning points),

fl and f2 are Fermi functions,

EF = the Fermi energy measured from the bottom of the

valance band

@(x,V) = the barrier energy profile measured from the

Fermi level, EF,



EF

AS

Xl x 2

eV

Metal 2

X

t
Energy

Figure 3. Arbitrary barrier between two metals.

Integrating the first integral of Eq. (22) by parts leads to:

41Tem S 11+ exp[_EF - Ex_/kT_ _dE x
(24) d = h3 kT D(E x) In i + exp [(EF - Ex - qV)/kT

o

At this point Simmons and Stratton agree. 19

q5o ÷

The barrier profile follows @o (x) at zero bias and @(x,V) =
eVx

L , when an external bias, V, appears across an insulator of thickness

L. Stratton assumes that the electrons near the Fermi level dominate the

tunneling current. Therefore the exponent of the transmission coefficient

can be expanded in powers of _x' where _x = I EF - ExI" Thus,

(25) In D(E x) = bI + Cl_ x + fl_x 2 + ... , where

_x is small and only the first two terms need be retained.

Substituting Eq. (25) into Eq. (24) and integrating yields:

(26) Jx =
B_ClkT

(ClkT)2 sin(xClkT)

exp (-bl)[1-exp (-ClV)_

B = 4_em (kT)2/h 3



bI and cI are functions of the applied voltage, V, and are approximated

by a power series with respect to V.

(27) bl(V ) : blo - bll V + b12 V2 + ...

Cl(V) = c10 - Cll V + c12 V2 + ...

bl(V) is now approximated by the first three terms of the power series of

Eq° (27) and c1(V) is assumedconstant (i.e., cI = c10). Substituting

these approximations into Eqo (27), Jx becomes:

2_ClokT
(28) Jx = J exp (bllV - bl2V2)[l-exp(-cloV )]

sin (xClokT)

For barriers which are symmetrical with respect to the center of the

L, bl c10 and Eqo (28) simplifies to Eq. (29),insulator, i.eo x = _ 1 = 2

2_ClokT CloV
(29) J = J exp (-b12 V2) sinh (-_--)o

x o sin(_clokT )

Chapter III compares this equation with experimental data. On pageV7,

note that theory and experiment agree over four decades of current.

Eq° (29) is now examined to obtain the temperature dependence

of the tunneling current. Since blo , c10 and Jo are independent of

temperature, Eqo (29) can be written in the form shown in Eq. (30) if

the applied voltage is held constant.

(30) JVx = J(T) = J(O) _ClokT
= const sin(_Clo kT)

Note that Jo _=J (0).

Representing the sine as a power series, Eq. (30) becomes:

(31) dx(T) = J (0)[1 + l(_czokT)2 + .o. _.
6



Approximating Jx(T) with the first two terms of Eq. (31) yields,

(32) Jx(T) = J (0) +_T 2.

Simmons20 finds this sameresult.

B. Review of Previous MIS Investigation

Relatively few investigations of tunneling between a semi-

conductor and a metal have been reported in the literature. The early

works 23-25 were primarily concerned with explaining experimentally observed

rectification in plate rectifiers of Cu-CuO 2 or of selenium. More recent

works 2-7 seek to utilize the phenomenon of tunneling to observe impurity

states in the semiconductor or to explore the band structure of semimetals

and degenerate semiconductors. This section reviews these investigations

to establish the present understanding of MIS tunneling.

A. H. Wilson 23 (1932) proposed a tunneling model to explain

rectification. His model envisioned the metal separated from the semi-

conductor by a thin insulating region. The current flows only by the

tunneling mechanism. An unlimited number of electrons tunnel from the

metal into the semiconductor since the metal is an infinite source. How-

ever, the finite number of electrons in the semiconductor conduction band

limit the number of electrons tunneling from the semiconductor into the

metal. Mott 24 (1939) pointed out that Wilson's model predicted the

opposite polarity of rectification than was experimentally observed. For

the same reason Wilson's model does not explain MIS tunneling saturation.

Miss C. C. Dilworth 25 (1948) theoretically investigated a metal-semi-

conductor rectifier with a thin insulating barrier in addition to the

Schottky barrier. She assumed the electrons of the semiconductor and the

metal could readily communicate through the insulator by the tunneling
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mechanism. She considers the diode equation,

j = _[2_Nek(@+V)]l/2 (1- e-eV/kT)e-e@/kT

to hold for this case by adding the proper exponential tunneling

communication terms to account for: (I) the voltage drop across the in-

sulator, (2) the barrier height and (3) the barrier thickness. Four

equations resulted--for strong and weak fields with high and low barriers.

This model requires the metal to form rectifying contact with the semi-

conductor, otherwise the diode equation does not apply. The data of

Chapter III violates this assumption, therefore this model does not apply

to the present MIS tunneling. P. V. Gray2 (1962) presented what he be-

lieved to be the first reported evidence of tunneling into a semiconductor

through an oxide film. He investigates tunneling between impurity states

and the metal. In a later expanded paper Gray3 (1965) derives an equation

for MIS tunneling current and conductance. These equations and their

interpretation makestrong demandsupon the generally accepted tunneling

concepts. An outline of these equations is given below.

Following the reasoning of Bardeen26 and Harrison, 27 Gray

arrives at an equation similar to Eq. (21).

Jx = mte _ dE S dEte-2K (fa - fb )(33)

WhereK =_Ik_dx - a form of the WKBapproximation

mt = effective mass kx = wave vector in the x
direction

Et = transverse energy fa and fb = initial and final
state occupation
probabilities.

Assumethe transmission coefficient, K, independent of applied voltage

and energy and expand K in a MacLaurin series in terms of Et yields:



K(Et) : K(O) + EtK'(O) + Et2
2'.

To first order:

(34)

K"(O) + ...

11

0 e(V-Vb)

Sdx = mte exp (-2K)_ dE dEt e -2K' Et

2_ 2 "h3 J -e(V -V b) o

Where K' = _ and Vb is the voltage required to bring

_Et

the Fermi level of the metal coincident with the energy level of either the

conduction band on the valence band of the semiconductor. The current,

then, is approximately

)(35) Jx- mte2 exp (-2K) (V - Vb) [1 - e-2K'e(V-Vb)]_-
4x1_3K'

and the conductance is

(36) dJ
x = G = Go_1 + (2K' e(V - Vb) - 1) e-2K' e(V - Vb) ]

dV

Where Go = mt e2 exp (-2K)

4_3K '

K and K' are constants evaluated at V : Vb and Et : O.

Equation (36) predicts a saturation of the conductance for both polarities

of applied voltage. This is not consistent with experimental data, neither

Gray's or that of this research. Fig. 4 gives the theoretical curves pre-

dicted by Eq. (36) with constant Go and a slightly varying Go • Fig. 5

shows Gray's experimental curves. Therefore, this theory predicts a near-

ohmic behavior for MIS tunneling after a rise at the band edges. This

result appears primarily by the assumption that the barrier parameters are

independent of applied voltage. In MIM tunneling ohmic behavior at low

voltages appears as predicted. 45 However, this ohmic region only extends

to voltages of the order of 100 mv. The theoretical MIM tunneling equation
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OJ
_._
c-
tt_
4-)

c-
O

o Vb
Bias Voltage

Go= constant

Figure 4.

\

Vb o Vb

Bias Voltage -----w-

Go= slightly varying

Theoretical curves from Gray (1965).

of Simmons predicts a vast increase in the tunneling conductance for

small changes in the barrier height. Fig. 6 graphically illustrates

curves calculated from Simmons 14, 18 tunneling equation.* Esaki and

Stiles 7 (Mar. 1966) note that Gray made a serious mistake in the inte-

gration of Eq. (34). This is strong evidence that the theoretical work

of Gray is not correct.

Esaki and Stiles 4, 7 (May 1965, Mar. 1966) observed tunneling

from a metal to the various conduction and valence bands of single

crystal Bi and Bi-Sb alloys at liquid helium temperatures. The

conductance curves shown in Fig. 7 display considerable structure which

Esaki and Stiles related to the sum of the conductance from the many

hole and electron band edges. A large dip in the conductance shows the

existence of the energy gap (I0 - 15 millivolts). In a later paper

Esaki and Stiles 5 (June 1966) theoretically analyze the energy gap

conductance dip of evaporated films of degenerate SnTe, Fig. 8. They

begin with a form of Eq. (21) and assume a trapezoidal barrier, i.e.

*Simmon's equations were used in this comparison, rather than Stratton's,
due to their greater convenience.
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CL-II(4)
2.2 ohm cm (p)
300OKo
t=45 A
A=O, 36 mm2

I I
\ -" cC:_

2.2 ohm cm (p)
\ 300OK

Go-_.__ A=o.74 mm2\
\

\

L _/a

I

Bias in volts

Figure 5. Gray's experimental curves.
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@(x,V) = eVv - eVx, where Vv is the barrier height at V = 0 and L is the
L

insulator thickness. Without providing the intervening steps, they find

that for relatively large voltage compared to the band gap, the current

tunneling from the metal into the semiconductor is given by:

(37) I c = const exp[_ (eV- EF _ Eg)_.
2

Their presentation makes no effort to verify the exponential behavior pre-

dicted by this equation or an earlier conjecture 7 that the conductance

peaks "could be attributed" to band bending near the surface. They do

not clarify which of the many conductance peaks are thought caused by

band bending. Following the work of Esaki and Stiles, Chang, Esaki and

Jona 6 (July 1966) report tunneling into degenerate InSb. The InSb

curves of Fig. 9 shed no new light on the tunneling process. It appears

that the results with these semimetals and degenerate semiconductors can-

not be directly correlated to experiments with well-behaved semiconductor

crystals such as the silicon used in the present research.

Three separate investigations report injection electrolumines-

cence produced by tunneling through thin insulators. The first, Jaklevic

et al I (Jan. 1963) used a variety of insulators on single crystal N-type

CdS. V-I curves with a Au field plate show rectification properties

similar to a Au - CdS contact with the Au positive for the easy direction

of current flow. Only positive voltage produced luminescence. Jaklevic

interprets the luminescence in terms of electrons tunneling from the

valence band of the CdS into the metal, thus injecting holes into the CdS

which recombine with conduction band electrons injected by the ohmic

contact. Green light is emitted upon recombination. Jaklevic states
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that although the experiments point to the mechanismof tunneling, little

is knownabout the details of the process.

Fischer and Moss30 (July 1964) produced the sameresults as

Jaklevic. They used both evaporated and single crystal semiconductors

(CdS, ZnTe, ZnSe, GAP). A wide band semiconductor replaced the field

plate metal.

O'Sullivan and Malarkey31 (Jan. 1965) duplicated Jaklevic's

work but replaced the Au contact with a Au - Cr combination to achieve a

stable high current contact. Current densities as high as 20,000 amps/

cm2 were passed through the MIS structure. At high current density, the
o o

emission spectum narrowed to 35A centered at 4900A.

These three electroluminescent investigations utilized MIS

tunneling but did not study the properties of tunneling. Current

saturation was interpreted as rectification. The important role played

by surface states, depletion and accumulation layers were not considered.

Chapter II presents an MIS tunneling model that is compatible with the

data presented in these papers.

Of the papers discussed in this section, only the works of

Gray2, 3 (Oct. 1962 and 1965) and Esaki 5 (June 1966) investigate the

properties of MIS tunneling. Neither demonstrate the exponential nature

of MIS tunneling nor do they investigate the role played by the charge

distribution in the semiconductor. The present research addresses it-

self to these problems.



CHAPTERII

Theory of MIS Tunneling

A. Introduction

It is desired to find an analytical expression describing MIS

tunneling. Stratton's MIM equation is a logical starting point since it

closely describes the experimental MIM curves of this research (see page

46). This equation involves the basic elements of tunneling and differs

from other tunneling equations mainly in the way the transmission coeffi-

cient is approximated. The experimental MIS structures are identical to

the MIM structures except the base metal electrode is replaced by a

silicon electrode. Many similarities are therefore expected between the

tunneling characteristics of MIM and MIS junctions. However, the silicon

electrode has properties different from those of the metal electrode.

These properties may effect the tunneling process and must be examined in

order to adapt Stratton's equation to MIS tunneling. The properties exam-

ined are the following:

I. Density of states function

2. Forbidden band

3. Conservation of momentum

4. Symmetry of the tunneling barrier

5. Space distribution of semiconductor surface charge o

The first four of these properties are discussed without taking into

account the distribution of charge at the silicon surface. The discussion

is qualitative and is intended to explore the differences in MIM and MIS

18
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tunneling. It is found that Stratton's equation requires only slight

modification in order to be adapted to MIS tunneling. The distribution

of silicon surface charge is then considered. A model describing the

effect of surface states, accumulation and depletion layers upon tunneling

current is proposed. The model predicts an asymmetric saturation of the

tunneling current which is dependent upon the conductivity type of the

silicon. Following this, someof the parameters of MIS tunneling are

discussed within the framework of the proposed model. Variation of these

parameters provides a meansof experimentally verifying the model.

Before proceeding to the analytical section, it is useful to

examine the physical structure (Fig. i0) and energy diagram (Fig. II) of

a MIS tunneling junction.

Semiconductor

wafer /

Insulator

6",

i,_ ° '

y" J I
L

_' ''t

Met ',, ,

field plate _ Ohmic
metal contact

Figure 10. Physical structure of a MIS tunneling junction.

Chapter IV describes in detail the construction of the MIS junctions.

However, the basic elements are shown in Fig. I0. A thin insulating film

is formed on a silicon wafer. A small metal dot field plate is deposited
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on the insulating film, and a large metal contact is deposited on the back

of the silicon. Fig. 11 is the energy diagram for a MIS junction with a

P-type silicon substrate.
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Energy diagram for MIS junction on P-type semiconductor.

The net effect of surface states on the energy structure is shown in Fig.

II as an excess of donor states which raises the Fermi level at the

surface. This is what is usually found on a chemically etched silicon

surface. 32 The insulator is pictured as having a conduction and a valence

band. 33,34,43 The forbidden band of the insulator is assumed large

compared to that of silicon.

B. Adaptation of Stratton's Equation to MIS Tunneling

I. The Forbidden Band

The forbidden band of the perfect silicon lattice is void of

allowed states. Electrons in the metal or the silicon cannot tunnel

through the insulator until they lie opposite unoccupied energy states in

the other electrode. 3, 5 Therefore, no current flows in the MIS system,

illustrated in Fig. 12, until the metal is biased either + V2 or -V I
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volts, assuming all the voltage drop is across the insulator. When+V2

volts is applied to the metal, electrons in the valence band of the sili-

con tunnel into unoccupied states of the metal. At -V1 volts, electrons

at the Fermi level of the metal tunnel into the conduction band of the

semiconductor.

eV2

'I

E c

EF

_]_
V2 -

"2

\

'eVl / \
- \

///__L , / ,/ /

_
V1 --

Positive Bias Negative Bias
(a) (b)

E c

EF

Ev

Figure 12. Tunneling between a P-type semiconductor and metal with (a)
positive voltage, (b) negative voltage.

For positive voltage, electrons from the conduction band can also tunnel

into the metal. However, since the semiconductor is P-type the concen-

tration of conduction band electrons is low, especially at low temperatures.

On N-type materials the situation is changed (Fig. 13). When the semi-

conductor is N-type, tunneling is dominated by metal-conduction band

transitions, and the forbidden band does not introduce a large gap in the

voltage-current characteristics. An N-type silicon is expected, therefore,
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to appear more like a metal than P-type. To alter the tunneling equation

to account for the effect of the forbidden band, VA is replaced by VA - VG,

where VA is the applied voltage and VG is the voltage required to bring

the Fermi level of metal opposite tunneling states in the silicon.

e" _r Ec
-- EF

Ev

m...

Negative Bias

-4

i
i

Ec

EF

/_ '// / 'E v

2
Positive Bias

Figure 13. Tunneling between an N-type semiconductor and a metal sepa-
rated by a thin insulator.

2. Density of States

There is a large difference in the density of states distri-

bution of a metal and a semiconductor (Fig. 14). However, the density of

states function does not appear in the tunneling equation of Stratton, 18

Simmons,14, 20 Hohm,15 etc. Harrison 27 notes that this is a direct conse-

quence of the application of the independent particle approach to tunnel-

ing. He goes on to state the independent particle model breaks down for

tunneling into superconductors but that the model is expected to hold for

tunneling into normal metals, semimetals, and semiconductors. Goldberg

and Pollack 35 point out that even though the tunneling equations do not
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contain the density of states explicitly, it is not correct to conclude

that the density of states does not indirectly effect tunneling. Since

the density of states is implied in the tunneling equation, it is assumed

that no direct account of the density of states need be added to Stratton's

equation in order to adapt it to MIS tunneling.

3. Conservation of Momentum

The rules for the conservation of momentum are also implied by

the independent particle model since the matrix element for the tunneling

transition goes to zero unless the transverse wave number, kt, is the

same for the initial and final states, 27 i.e., there is no force perpen-

dicular to the direction of tunneling. However, transitions with the

conduction band of the silicon do not conserve transverse momentum unless

a phonon is also emitted or absorbed. 9d Furthermore, the distribution of
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of momentumfor the semiconductor is considerably smaller than for a metal,

i.e., the Fermi surface of the semiconductor is muchsmaller than that of

the metal field plate3, 5 (Fig. 15).

.i I
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/
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\
\
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Y

k x

Figure 15.

Metal Semiconductor

Relative size of the Fermi surface of metal and semiconductor
(from Gray3).

Esaki 5 notes that the shadow cast by the semiconductor Fermi surface is

always covered by the large shadow of the metal. Hence, electrons

tunneling from the semiconductor into the metal can easily find an avail-

able site in the metal but electrons tunneling from the metal are re-

stricted to a narrow region near the shadow cast by the semiconductor.

This reduces the current but does not greatly alter the tunneling voltage-

current characteristics. The restricting of the region of allowed momentum

and the requirement of phonon cooperation have the effect of reducing the

transmission coefficient, D(Ex). Recall that Stratton 18 approximates the

transmission coefficient with the power series:
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In D(E ) = bI + C1 _x = blo - b11V+ b12 V2 + C10

This sameapproximation should hold for MIS tunneling with the magnitude

of the coefficients reduced. Moll9 presents this sametype of reasoning

in examining tunnel diodes of silicon and germanium.

4. Symmetry of the Tunneling Barrier

The tunneling current between two electrodes separated by a thin

insulator is dependent upon the energy barrier of the insulator. If the

work function of the two electrodes are not equal, then the barrier is

asymmetric. For MIM tunneling this results in a difference in the forward

and reverse current. Simmon,s29, 60 (also Stratton 18 and Hartman 19) in-

vestigated the asymmetry of these currents and found only small changes

in the tunneling characteristics as shown in Fig. 16. No change is

evident until the applied voltage exceeds the lower of the two work

functions, i.e., eVA>@1, where VA is the applied voltage and @1, and @2

are the work functions of the two metal electrodes such that @i < @2"

1014 _S=35 @ = 2 _Base +

A@ : I ..... Base -1012

1010

108

106

104

102

100

10 r2

CM
E
0

E
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o
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0.5 1.0 1.5 2.0 2.5 3.0 3.5
Volts

Figure 16. Current through an asymmetric tunneling barrier (from
Simmons60).
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This type of analysis is applicable to MIS tunneling with N-type

silicon since the tunneling transitions are with the conduction band for

both directions of current as shown in Fig. 13, page 22. However, on P-

type silicon there are tunnel transitions with the valence band for

positive voltage and with the conduction band for negative voltage, as

shown in Fig. 12, page 21. In general the tunneling barrier is different

for the two current directions and a current asymmetry should occur.

5. Summary

The semiconductor properties discussed above predict no major

difference between MIM and MIS tunneling. The forbidden band shifts the

tunneling curve to higher voltage and the momentum considerations reduce

the magnitude of the current. Stratton's equation contains the primary

principles of tunneling and describes the Al-polymer-Al V-I characteris-

tics. Therefore, it is reasonable to apply his equation, in modified

form, to MIS tunneling. When surface effects are not considered, Eq. (29)

becomes:

2_ClokT

(38) Jx = Josin(RC10kT) exp!-b12(V A - VG)2_sinhFCl___OO(VA-VG) _2

where b12 and c10 are smaller for MIS than for MIM.

The constants b12 and c10 are functions of the physical parameters of the

insulator, i.e., dielectric constant, thickness and effective mass. 14, 15

Of particular importance is the dependence of b12 and Cl0 upon L-2 and

L-I respectively, where L is the thickness of the insulator. The tunnel-

ing current is therefore dependent upon the electric field in the

insulator. 39,40,41 The importance of this fact is clearly seen in the

following section which includes the effect of surface charge upon MIS

tunneling.



/
/

27

C. The Effects of Surface Charge upon MIS Tunneling

The nature of surface charge at the silicon-silicon oxide inter-

ference has been intensively studied in the past few years by measuring

the differential capacitance as a function of applied voltage. 32,36,37,38

The structure of the devices used in these experiments is identical to

the MIS tunneling junction except the thickness of the insulator is so

great that very little current flows. On silicon the surface states cause

an N-shift in the surface energy. The surface states are filled up to

the Fermi level. When negative voltage is applied to the metal field

plate, mobile electrons are removed from the surface states. This con-

tinues until the supply of electrons from the surface states is exhausted.

What happens when the negative bias voltage is increased still further

depends upon the conductivity type of the silicon. For P-type silicon

positive mobile holes move to the surface and form a surface accumulation

region. For N-type silicon electrons from the conduction band are removed

from the surface leaving positively charged donor ions. This is a

depletion region. The electric field of the applied voltage is entirely

within the insulator until the surface states are exhausted. Since the

field lines terminate on charge, an increase in the negative bias will

cause the field to penetrate the bulk N-type silicon but not P-type where

a surface accumulation layer has formed. For positive voltage the

opposite effect occurs, i.e., electrons fill up the surface states and

then form an accumulation layer on N-type and a depletion layer on P-type

silicon. The behavior of the electric field again follows the charge

distribution. These phenomena are directly applicable to the case of

MIS tunneling°
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It is tempting to consider the MIS structure as a tunneling

layer resistance in series with a depletion layer resistance. However,

the resistance concept by itself is misleading and leads to an artificial

representation of the processes involved. A model which considers the

tunneling junction as a field dependent emitter and the depletion region

as a collector is now proposed. The data presented in Chapter III not

only shows that this model describes the current-voltage characteristics

but it also predicts the changes caused by the variation of the parameters.

The concept of the majority carrier emitters is first developed,

i.e., conduction band tunneling is by electrons, while valence band

tunneling is by holes. Hole tunneling as comparedto electron tunneling

shows a marked similarity.

Figure 17. Current in a P-type MIS structure.

If electrons from the valence band of the semiconductor are

considered to tunnel into empty states in the metal, then the electron

enters the metal and traverses the external circuit to the ohmic contact

metal, (Fig. 17). Whenthe electrons leave the valence band, they leave
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holes behind° The holes are then movedby the semiconductor's surface and

bulk fields (major conduction) and recombine with the electrons in the

space charge region at the ohmic metal contact. The energy barrier for

the electrons is the conduction band edge of the insulator. However, the

electron tunneling from the semiconductor through the barrier to the metal

is identical to a hole tunneling from the metal into the semiconductor,

except the valence band edge of the insulator is the barrier for the

hole. This concept envisions the metal-insulator-semiconductor surface

is a hole emitter and the space charge region of the semiconductor is a

collector. Any charged carrier which reaches the space charge region is

collected and movedin the high field at the surface. This is analogous

to a bipolar transistor in that there is an emitter and a collector. The

resistance of the back biased collector diode is very high, yet any carrier

reaching it from the emitter can easily move in the high field. There-

fore, the concept of depletion layer resistance is not valid since the

current is not determined by I = _, but rather by the emitter parameters.

In a similar manner the current in the semiconductor space charge region

is not strongly dependent upon the resistance of the region since it is

a collector of holes emitted by the tunneling layer. The resistance of

the region is not the important quantity but rather the potential drop

across the layer. For the N-type semiconductor the above model also

holds. The energy diagram for MIS on an N-type semiconductor is given in

Fig. 18. Here the electron is the majority carrier and the current is

carried by electrons around the entire circuit loop.

Tunneling current is dependent upon the electric field in the

insulatoro 14,15,45 The following is a discussion of how the field in the

insulator of an MIS structure varies with applied voltage. The field



3O

Figure 18. Current in an N-type MIS structure.

lines pass through the insulator and terminate on charges in the metal

and semiconductor. The charge on the metal appears at the surface and

does not penetrate the metal. The charge on the silicon, however, is more

complex. Charge can build up in surface states and in a depletion or

accumulation layer at the surface. The location of these charges deter-

mines the field in the insulator and hence the current-voltage relation-

ship of the MIS structure. It is essential, therefore, that the general

nature of charging of the surface states be established. The surface

states in general can have any type of energy distribution. Silicon

under normal ambient conditions has an excess of donor type surface states.

These states are partially filled, and create an internal electric field. 46a

This internal field does not effect the tunneling consideration except

where the tunneling barrier is altered by the field.

Fig. 19 illustrates the termination of electro-static field

lines on charges of an N-type semiconductor with surface states. 46b At

zero bias the surface states which lie above the Fermi level are con-

sidered empty. If an external field is suddenly applied a large
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accumulation region forms. Excess free electrons of this accumulated

charge tend to fill up the surface states until equilibrium is reached.

Wi_en enough bias is applied all of the surface states are filled. Any

additional bias results in an increase in the charge collected in the

accumulation region which is immediately adjacent to the surface. In

both cases the charge in the semiconductor is at the surface and the

field in the insulator is approximately proportional to applied voltage.

_n this case the semiconductor surface appears met_lic. If the bias

polarity is reversed then the surface state begins to empty. When the

surface states are empty then negative charge is removed from the surface

region of the semiconductor leaving immobile positive charge (ionized

donors). Field lines now begin to terminate on bulk charges and the

field penetrates into the bulk as illustrated in Fig. 20.

The above analysis can also be carried out on P-type semi-

conductor. The results are the same except the polarities are reversed. 46c
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Fig's. 21 and 22 illustrate the energy diagrams for P-type silicon showing

the field line terminations for externally applied bias. Therefore, the

insulator field depends upon the charge distribution in the semiconductor.

The charge distribution is a function of applied voltage and semiconductor

conductivity type. In this model the insulator field,as a function of

applied voltage_is predicted to be as shown in Fig. 23. The current

emitted by the tunneling junction is dependent upon the insulator field.

in the regions where the field is proportional to the applied voltage,

the MIS current increases in the exponential manner described by the

modified Stratton equation. When the depletion layer begins to form,

the insulator field no longer increases or increases very slowly and the

emitted current levels off. The current should level off with negative

voltage on N-type silicon and with positive voltage on P-type as shown

in Fig. 24.

When the depletion layer forms, minority carriers tend to

collect at the surface in an inversion layer. The minority carriers are
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mobile and add tothe tunneling current. However, minority carriers are

not expected to greatly effect the insulator field since they are of low

density and readily leak (tunnel) through the insulator.

In the summary the behavior of metal-silicon tunneling is ex-

plained in terms of the surface states of the silicon. The high density

of surface states gives the silicon a metal-like surface. When an external

voltage is applied, charge accumulates in the surface states. The elec-

tric field lines terminate on this accumulated surface charge, therefore,

the insulator field is proportional to the applied voltage. As the

external bias is increased, charging of the surface continues until the

surface states are exhausted. Further increase in the applied voltage

creates either an accumulation layer or a depletion layer in the silicon

depending upon the conductivity type of the silicon and polarity of the

applied voltage. If an accumulation layer forms, then the insulator field

does not penetrate the silicon bulk and continues to increase. Therefore,

the tunneling current increases in an exponential manner as before. If a

depletion layer forms, then the field lines terminate on ionized dopant

states in the bulk. The field now penetrates the bulk and the field in

the insulator levels off and approaches a constant. As a result the

tunneling current also levels off. The field penetration occurs with

positive voltage on P-type silicon and negative voltage on N-type.

._ D. Tunnel ing Parameters

1. Introduction

The model proposed in section C agrees well with experimentally

_ observed current-voltage characteristics. However, examination of the

tunneling parameters provides further verification of the model and adds
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insight into the MIS tunneling process. The insulator thickness, work

function of the field plate metal and the temperature are the parameters

considered in this section. The variation of the insulator thickness and

field plate metal are simple problems of electrostatics. Variation of the

temperature provides only qualitative discussion since both the properties

of the silicon and the tunneling current are dependent upon temperature.

2. Work Function of the Metal Field Plate

When two electrodes of different work functions, which are

electrically connected, are brought into proximity there is a charge

transfer between them in order to bring the system into equilibrium. 47a

When equilibrium is reached the Fermi levels of the two electrodes are

coincident. Fig. 25 illustrates the energy profile of N-type semi-

conductor without surface states and a large work function metal, i.e.,

@m>@s/c o In this case, electrons leave the semiconductor and enter the

metal. A positive charge builds up in the semiconductor.

Vacuum

Level

@m

Figure 25.
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Charge transfer from a large work function metal to an N-type
semiconductor without surface states.

This is the condition for a rectifying contact if the insulator were not

pre_ento If the work function of the metal is less than that of the
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semiconductor, i.e., ¢m<¢s/c , then electrons leave the metal and collect

on the semiconductor surface.

and is illustrated in Fig. 26.
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Figure 26. N-type semiconductors--low work function metal, no surface
states.

Real surfaces contain many surface states which accommodate the

transferred charge. A high work function (@m>¢s/c) field plate metal

empties some of the surface states while a low work function metal,

@m<@s/c, fills some of the states. On a MIS junction on N-type silicon,

increasing the metal work function has the effect of reducing the voltage

required to empty the remaining surface states. Hence, the current

saturation level is reduced. The opposite effect occurs on P-type

silicon since the number of unfilled states determines the point of

saturation. Fig. 27 shows the expected results.

The amount of charge transferred between two electrodes is

determined by Gauss' law:

_s _ dA =
_T

• c , where QT is the transferred charge, and E is

the field created by the difference in electrode work functions.
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, where L is the insulator thickness and e

is the electronic charge. Therefore:

EA - TM AcA
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Ic

@m1

_ml<_m2 1

,/o_

I0"

,0 _

| ! I I I

Semiconductor

- Applied Voltage .

N-type

c.)

lo:t°a(hm_m 1

lo'/ (hmi<@m2

Semiconductor
- App!ied Vo!tage -F

P-type

Figure 27. Predicted tunneling characteristics with high and low work
function field plate metal.

For the purpose of example, it is useful to assume the published work

function values and calculate the number of electrons transferred per
O

unit area for several metals. Assuming an 80A thick insulator;
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Material ¢ Cs/c - ¢m CT = NT

eA

Si48, 49 4.0ev

A150 3.7 0.3ev 0.6 x 1012 electrons/cm 2

Sn50 4.1 -0.1 -0.2 x 1012

Au50 4.6 -0.6 -1.2 x 1012 ,

A surface state density of approximately 4 x 1012 states/cm 2 is calculated

in Chapter III. The above metals alter the number of states by a factor

of 5 to 30%.

In the next section it is shown that the insulator field at

current saturation depends upon a¢, i.e.

E Qs + A¢

_A eL

The tunneling current is approximately an exponential function of the

electric field. Therefore:

Isat = A exp (_E) = A exp[e ( Qs + a__@_)1_A eL

Isa t = B exp ( _¢ )
-TC

where Isa t is the saturated current level and B = A exp (_Qs/EA). Hence,

the saturated current level is approximately an exponential function of

_¢.

3. Insulator Thickness

The point at which the tunneling current levels off is dependent

upon the maximum charge collected in the surface states. The field in

the insulator terminates on this change. The charge, Q, and field, E,

are related by Gauss' law:



_sE.dA

]

Insulator

Metal_Gauss
Surface

con

4O

Only the area perpendicular to the semiconductor surface has a net elec-

tric field. Therefore,

EA : V_A^ :
L E

Where VQ is the voltage required to completely ionize the

surface states; Q is the charge collected at the surface_ L is the

insulator thickness and A is the area of the contacting metal. Hence:

VQ : QL .
EA

However, the charge, Q, is dependent upon the insulator thickness since

the field plate metal and the silicon transfer charge in order to aline

the Fermi level. The amount of transferred charge, QT' was found in the

previous section. The total charge, Q, is the sum of the unpreturbed

charge, QS' and the transferred charge. Q = QS + QT. The voltage at

saturation then is:

VQ = (Qs + QT)L :L_ _-AI Q_ + A@_A_= LQs+eL// _

and E = VQ = Qs + _@
L _A eL

However, for small thickness changes the field at saturation is approxi-

mately independent of insulator thickness. For this case the voltage, VQ,

increases linearly with insulator thickness but the value of the saturated
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current is independent of insulator thickness since it is controlled sole-

ly by the insulator field. The expected tunneling curves are given in

Fig. 28.

In
Thickness II1

Voltage +

Figure 28. Predicted variation of the tunneling characteristics with
insulator thickness, A@<<I.

4. Temperature

MIM tunneling current decreases as the square of the absolute

temperature. The temperature dependence of MIS tunneling is expected to

be stronger since the tunneling transition requires phonon cooperation.

Temperature also effects the properties of the silicon surface and bulk.

These factors complicate the analysis of the temperature dependence of

the MIS current. For simplicity, the case of constant surface charge is

examined. For this case the voltage required to fill or empty the

surface states remains constant with temperature but the saturated

current level is reduced due to the decreased tunneling efficiency. This

case is illustrated in Fig. 29. Deviations from this simple model can be

attributed to changes in the surface states.



42

T1 io_ T//

_ T2.10 _

u 10;

TI>T2 II ,o'//

I I J • i

G_432 io; _j
- +

Applied Voltage

IIFI II°e

- 10 3

T21 .102 /

"foil /

I

TI>T2

,,,. ,,_. .__- 3 2 s o/ 2 4 S
- +

Applied Voltage

N-type P-type

Figure 29. Predicted effect of temperature upon V-I characteristics (no
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CHAPTER III

MIS Experimental Data

A. Introduction

This chapter presents experimental data which verifies the

proposed MIS tunneling model. First the experimental curves compare

reasonably well with Stratton's MIM and modified MIS tunneling equations.

Note the exponential nature and the asymmetric saturation of MIS cuTrent.

Systematic variation of experimental techniques eliminated technique as

the source of the current saturation. The formation of depletion and

accumulation layers on MIS tunneling junctions appears in the C-V curves.

The above experiments establish the basic properties of the proposed MIS

model. Added verification of the model results from variation of the

insulator thickness, work function of the field plate metal, and

temperature.

'The initial exploratory experiments established the techniques

of constructing and testing the MIS devices. Devices or sets of devices

were constructed to demonstrate particular properties of MIS tunneling.

Therefore, most of the samples were not subjected to a complete series of

tests and the following curves came from different samples. Of thirty-

_!ine MIS samples constructed, twenty-seven exhibited tunneling. The

other twelve had thick insulators and provided capacitance-voltage (C-V)

characteristics. All of the tunneling samples tested had the character-

istics shown in the following data. A slow aging of the samples occurred,

43
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so measurementsbegan immediately after removal of the specimen from the

vacuumchamber. An evaporated aluminum field plate produced a more

electrically stable device than did other metals such as Au and Sn.

The V-I data was taken with the bridge51 described in Appendix

I. The bridge was thoroughly analyzed and tested before using it to test

experimental devices. Measurementof fixed carbon resistors of values

from IOK ohms to 680 megohmstested the reliability of the bridge. The

bridge leakage conductance was approximately 10-9 mhos (I000 megohms).

A check of the leakage current of the bridge always preceded testing of

the MIS samples. The leakage current was subtracted from the total current

to obtain the true sample current.

B. Comparison of Theoretical Model with Experimental Data

The experimental approach of this research studies MIM tunnel-

ing and then replaces one of the metal electrodes with a silicon electrode.

The difference in the resulting MIM and MIS curves arises from the

properties of the silicon. Fig. 30 gives V-I curves for a number of

different MIM tunneling junctions. These curves resemble those of Fisher

et a145 and Christy. 52 They illustrate the general exponential character

of MIM tunneling and the strong dependence of current on thickness. Fig.

0

31 shows an expanded MIM tunneling curve; the insulator thickness is 80A.

The small X's mark a fit of Stratton's equation. 18 The values of the

constants, b12 : 1.0 and C10 - 16.4, are close to those used by Stratton

to fit the A1 - AI203 - A1 tunneling curves of Fisher and Giaever. 45

Stratton's fit requires b12 = I.II and CIO = 12.6. The excellent agree-

ment for the polymer insulator over four decades of current indicates

Stratton's equation to be adequate for MIM tunneling and suitable as the

basis for MIS tunneling.
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Eq. (38) of Chapter II modifies Stratton's equation by taking

into account the properties of the silicon. Only two modifications seem

necessary: 1) reducing the constants, and 2) replacing the applied volt-

age, VA, by VA - VG. N-type silicon substrates compare readily with

Eq. (38) (Fig. 32) since they are more metal-like than P-type. Fig. 32
o

is for positive voltage on N-type silicon with an 80A thick polymer

insulator. Calculations from Eq. (38) give the small X's. The constants

used for the MIS curve are approximately 10% smaller; b12 : 0.9, ClO : 14,

VG = 0.2 volts. Very good agreement is achieved with these minor modifi-

cations. The experimental and theoretical curves of Fig. 32 coincide

except for low voltage. The constant difference at low voltage may be

the fault of the equation or a fixed leakage current. From the close

agreement of the two curves it is felt that the rules which govern MIM

tunneling also govern MIS tunneling. This is the first published evidence

of the exponential nature of MIS tunneling and the first direct comparison

of MIM and MIS current. It is significant that MIM and MIS tunneling are

described by the same basic equation.

Fig's. 33 and 34 present tunneling current curves for N- and P-

type silicon for both voltage polarities. The X's again represent points

calculated from Stratton's modified equation shown in Fig. 32. For P-type

VG changes to 0.55 volts but the constants b12 and CIO remain the same as

for N-type. The agreement is remarkable. No major difference appears

except an asymmetric saturation of the current which depends upon the

conductivity type of the silicon. On N-type the current saturation occurs

with negative voltage and with positive voltage on P-type. The proposed

field penetration model predicts this result. The onset of saturation is

quite sharp and little deviation from the exponential tunneling occurs
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until saturation begins. This is compatible with the model which requires

complete ionization of the surface states before field penetration.

Experimental anomalies could cause the current saturation. To

eliminate this possibility, three causes are investigated: I) saturation

of the measuring technique; 2) a large series resistance (either internal

or external to the MIS structure); and 3) pin holes in the insulator which

could allow smal_ metal silicon diodes to be formed. If the measuring

technique or a large series resistor is the cause of current saturation,

then the saturation would occur with both voltage polarities and with MIM

junctions, therefore eliminating case 1 and 2 by inspection. The field

plate metal of Fig's. 33 and 34 is vapor deposited aluminum. To test the

Al - silicon contact, aluminum was deposited directly on both N- and P-

type silicon. On N-type a low resistance ohmic contact was formed. The

A] - P.-type silicon formed a diode with the V-I characteristics shown in

Fig. 35. This diode had a large short circuit photo current, 1.7uA in the

light of a 40 watt incandescent bulb at three cm. The V-I curve is

continuous through the origin and does not display the symmetryof the

MIS curve of Fig. 34. No photovoltaic effects occurred with the MIS

samples. This evidence eliminates the possibility of metal bridges

dominating the conduction through the insulator.

The polymer film MIS samples are nowcomparedwith the work of

Gray.2,3,51 Fig's. 36 and 37 give both semi-log and linear scale con-

ductance curves for N- and P-type silicon. A set of Gray's linear scale

conductance curves appear in Fig. 5 (page 13). The linear scale curves

compare very closely in shape which indicates that Gray's conductance

curve would also display the exponential character of tunneling. The

semi-log graphs clearly reveal the exponential character of MIS tunneling
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and suggest that another mechanismcauses the saturation. Linear scale

graphs do not demonstrate that fact.

The general effect of decreased temperature appears in Fig's.

36 and 37, i.e., the current decreases and the voltage at the onset of

saturation depends little on temperature. This is in agreement with the

model. A more detailed discussion of the temperature dependencecomes

later. The samples of Fig's. 36 and 37 were tested to less than four

volts which provides investigation of only the first 1.5 to 2 volts of

saturation. Higher voltage testing might damagethe samples before other

tests could be performed. However, one sample tested to 11.4 volts

(Fig. 38) exhibited no damageor change in the saturation characteristics.

In the saturation region the electric field in the insulator does not

increase since the field penetrates the bulk semiconductor. Therefore,

the M!S structure can withstand very high applied voltage when in the

saturation region. If the insulator supported the entire voltage of the

above sample, then the field strength of the insulator would exceed

11o4V = 1.14 x 107 volts/cm. This unusually high field strength

IOOA

adds evidence that the field penetrates the bulk.*

The model proposed in Chapter II requires that depletion and

accumulation layers form on the silicon surface when external bias is

applied° The fact that the layers do form with thick insulator devices

is well documented.32'36,37'38 However, for a thin insulator, the charge

partially leaks off, i.e., tunnels through the insulator. 55 Therefore,

the analysis must show that the depletion and accumulation layer also

form with thin insulator devices. Fig's. 39 and 40 show capacitance vs

*Polyethylene53 - 5 x 106V/cm, teflon 53 - 8 x 106V/cm are examples of the
field strength of other materials.
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voltage and current vs voltage curves for N- and P-type silicon. The
0

insulator thickness of these two samples is approximately 80A. The

capacitance curve of Fig. 39 clearly demonstrates the formation of a

depletion layer on the N-type silicon by the sharp decrease in capacitance

for negative voltage. The depletion layer forms before the current

saturates. The accumulation layer is maintained with positive voltage even

though a current up to 10 uA flows. The formation of an accumulation layer

for negative voltage on P-type silicon is seen in the capacitance curve

of Fig. 40. The capacitance does not rise as sharply as with thick insu-

lators. This probably results from tunneling leakage of the accumulated

charge. For zero bias voltage the P-type silicon surface is already

depleted by an internal field. However, empty surface states remain and

must fill up before the external field penetrates the bulk.

The following basic properties of the proposed MIS tunneling

model are therefore established:

(a) MIS tunneling is exponential in nature and similar to MIM

tunneling.

(b) Current saturation occurs with only one voltage polarity

and is a separate mechanism from tunneling.

(c) Depletion and accumulation layers form on the silicon

surface with thin insulators.

The model verification continues by experimentally varying the tunneling

parameters and comparing the results within the concept of the proposed

modelc
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C. Variation of Parameters

1. Insulator Thickness

Chapter II showed that the electric field at the onset of cur_

rent saturation depends little on insulator thickness. This model pre-

dicts the applied voltage at saturation to increase linearly with insula-

tor thickness but the saturated current level to remain constant. To

test these properties, three samples with different insulator thickness

were constructed on N-type silicon with an aluminum field plate. The

thickness of the three samples came from assuming a linear film formation
o

rate of 6.7A/min. This linear formation rate was determined from tests

on MIM junctions formed under the same polymerization conditions. The
o

insulator thickness of the MIS sample tested are 80, I00 and 120 A,. The

V-I Characteristics of these samples appear in Fig. 41. Note that the

tunneiing current decreases for increased insulator thickness but the

saturated current level remains approximately constant. To assign the

point of saturation, the V-I curves are extrapolated beyond saturation

as shown in Fig. 42 and the voltage drop across the silicon surface, VS

is determined by Vs = VA - VI, where V I is the voltage required to pro-

duce the extrapolated current curve and is considered the voltage drop

across the insulator. Vs, VI and E I are plotted as a function of

applied voltage in Fig. 43. The voltage drop, Vs, across the silicon

surface is zero until saturation; it then increases in direct proportion

to the applied voltage. The extrapolation of Vs in Fig. 43a, back to

Vs = 0 serves as the value of applied voltage at which saturation begins,

i.e. VA = VQ. VQ is the voltage required to fully charge the surface

states° The insulator voltage and field increase linearly with applied

but level off and approach a constant when saturation is reached.



61

103

102

;I
E

c-

o

o 101

I0C

10-1

0

120A

o

IOOA

o

80A

F [!
#

L

i

i

N-type silicon, -

60 _ cm, Room]_emp.,

Area = 0.85 _rn_
Thickness: 80_ - #32si

: 100_ - #33si
= 120A - #36si

_1 I I I

4 3 2 1 0 I 2 3 4

- Applied Voltage, Volts +

Figure 41. N-type MIS tunneling for three polymer thicknesses.
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Figure 42. Method of determining Vs.

Fig. 44 shows the voltage at saturation, VQ, to increase linearly with

insulator thickness, and the field E = VQ holds approximately constant.
Q L

The current at VA = VQ is also approximately constant as shown in Fig.

45. Fig. 45 also shows the exponential dependence of MIS tunneling

current upon insulator thickness for VA = constant <VQ. For comparison,

current vs thickness also appears for MIM tunneling.

The surface state density is often calculated from capacitance -

voltage data. Tunneling saturation provides a new method of calculating

surface state density since the electric field at current saturation

relates to the surface states by:

Q : _E = N,
T--

Where: N is the density of surface states

E is the field at saturation.
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From Fig. 44b, EQ= 3 x 106 volts/cm.

N : (2.8) (8.85 x 10-14 f /cm) (3 x 106 V/cm)

1.6 x 10 -19 coul/state

N = 4.7 x 1012 states/cm 2

By the capacitance method with data from Fig. 39,

N - Q = C__VV: (2.05 x lO-9f)(2.3 Volts)

eA eA 1.6xlO -19 coul/state) (O.85xlO-2cm 2)

N = 3.5 x 1012 states/cm 2
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The density of states calculated by the tunneling method is 34% larger

than the value calculated from the C-V curve. This may be caused by

multiply-charged sites but these sites would probably be evident in both

experimental methods. In any event, it is clear that tunneling saturation

may be utilized as a method of studying semiconductor surface states.

2. Field Plate Work Function

The amount of charge transferred between the field plate metal

and the silicon depends upon the difference in work function of the two

electrodes. N-type silicon transfers electrons to a large work function

field plate, thus remvoing charge from the surface states. As a result

the proposed MIS tunneling model predicts the current level at saturation

to decrease exponentially with the difference in the silicon and metal

work functions. To test this property, several N-type MIS samples were

made using different work function 50 field p_ate metals; aluminum (¢ :

3°7 ev), tin (0 = 4.1 ev), and gold (0 : 4.6 ev). The V-I curves of

Fig. 46 for these metals show the effects of the work function upon

current ievel at saturation.
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Some experimental difficulty occurred in testing of the gold

samples. The current appeared very erratic and all three samples tested

broke down with small positive voltage. Note in Fig. 46 that the gold

curve is shifted to high voltage. The reasons for this anomaly are not

known although it may be associated with the high temperature required to

evaporate the gold. The heat may have affected the polymer insulator.

The curves of Fig. 46 are offset and do not lend themselves to

the type of analysis used with the variation of insulator thickness. To

obtain useful information concerning the effect of work function upon MIS

tunneling, the d c conductance is plotted in Fig. 47. These conductance

curves reach a definite maximum. Plotting these maxima as a function of

A@ results in the approximate straight line of Fig. 48. Therefore, the

experimental anomalies do not mask the dependence of the current satura-

tion upon the density of filled surface states and implies that the

saturation depends upon the surface states and not other tunneling para-

meters.

3o Temperature

Fig's. 36 and 37 show the general effect of reduced temperature

on MIS tunneling characteristics. The tunnel efficiency decreases but

the voltage at saturation holds approximately constant. To examine

the effect of temperature upon the point of saturation, the voltage drop

across the semiconductor surface, Vs, is plotted as a function of applied

voltage at 296 and 77°K. Fig. 49 illustrates two P-type samples. These

curves demonstrate the approximate invariance of the point of satura-

tion. This is in agreement with the simple case discussed in Chapter II.
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D. Impurity Distribution at the Silicon Surface

The variation of the depletion layer capacitance with voltage

is dependent upon the impurity and defect distribution in the semiconduc-

tor as illustrated in Fig. 50 for an abrubt junction diode. A semi-

conductor surface is disturbed by many defects which penetrate a finite

Depletion
Laye r

Abrupt Junction /

•

_-Electric Field Line

Figure 50. Impurity-defect distribution in a semiconductor.

depth into the semiconductor bulk. These defects may cause a non-homo-

geneous distribution of localized states in the bulk near the surface.

The MIS tunneling junction offers a possible experimental method of

determining this distribution. The analysis which follows first dis-

cusses abrupt PN junctions and thick insulator MOS structures. This is

followed by an analysis of thin MIS structures which utilizes the point

of tunneling saturation to determine the voltage at which the surface

states are completely filled.

For an abrupt junction PN diode, Schottky 64 found that the

reciprocal depletion layer capacitance increased linearly with the

square root of the voltage across the layer. This square root
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relationship has been verified many times, e.g. Giacoletto.65 Garrett

and Brattain 66 point out that the assumptions which produce the square

root dependence are clearly met by a reversed biased PN junction but not

completely by the surface of a semiconductor. Fig. 51 is a plot of

(I/Csp) 2 versus applied voltage for the N-type MIS capacitance-voltage

curve of Fig. 39. Csp is the space charge (depletion) capacitance calcu-

lated from the measured capacitance using the following equivalent

circuit: o_____i_______o

Ci Csp , Ci = Insulator capacitance.

If the depletion layer followed a square root relationship, as does an

abrupt PN junction, then the curve of Fig. 51 would be a straight line.

Lehovec, et a137 and Terman 36 reason that the depletion layer capaci-

tance of an MIS structure follows the square law relationship but the

charge which collects in the surface states prevents the manifestation

of this fact in a simple (I/Csp)2 versus applied voltage plot. In a

back-biased PN junction all of the applied voltage appears across the

depletion region. In the MIS structure, however, the applied voltage is

divided between the insulator and the depletion layer. How the voltage

divides depends upon how the charge collects in the surface states.

Lehovec assumes the MIS equivalent circuit to be:

where: Ci = the insulator capacitance

esp = the space charge capacitance

Css = the capacitance associated with the
charge collected in the surface states.

If the total capacitance is measured at a high frequency, the charge in
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the surface states cannot follow the ac field, hence the contribution of

the surface state to the total capacitance is not known with confidence.

However, Lehovec assumes the high frequency equivalent circuit to be:

The measured capacitance, Cm, is:

Ci Csp •

(39) i I I
- + _ and Csp=CmC i

Cm Ci Csp Ci -Cm

Lehovec then assumes a form of the Garrett and Brattain square root

equation (which assumes a homogeneous distribution of impurities).

[_noe2_l'2_ 1-exp(_) "

(40) Csp :_2k--CT-// i _ -_ i_ exp(-__I/2 _

where: Vsp = voltage across the space charge region

no = bulk electron concentration

e = electronic charge

= the dielectric constant.

Note that Vsp is negative which leads to Eq. (41) for eVsp>>l.
kT

(41) Csp -
-IE n_e_ 1/2 Vsp -1/2

From Eqs. (39) and (40) the voltage drop across the depletion layer can

be calculated. With Vsp known, the space charge, Qsp' can be subtracted

from the total charge. This difference is attributed to the charge

collected in the surface states.

Since the square root depletion layer equation is known to be

valid for depletion layers within the bulk silicon, Lehovec's formulation
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seemsreasonable for a depletion layer which has penetrated the bulk.

This permits calculation of the surface state charge as a function of

applied voltage. However, surface defects may penetrate the bulk silicon

and create a non-homogeneousdistribution of localized states which will

give rise to a non-square root C-V relationship. At low voltage the

impurity distribution analysis is complicated by the collection of charge

in surface states. At higher voltage the surface states are filled and

the C-V relationship is directly related to the impurity and defect

distribution. The dc voltage at which the surface states are fully

charged can be obtained for thin insulator MIS structures from a tunneling

current curve for the samesample. The point of current saturation

corresponds to the point of filled surface states and can be found by the

method of Fig. 43a. For sample #30si, the voltage at saturation, Vs, is

2°4 voltso Subtracting Vs from the applied voltage, VA, and plotting

(VA-Vs) versus I/Csp on a log-log scale (Fig. 52) yields the relation:

(42) 1
Csp - B(VA-Vs)O'8

where: B = constant

VA = applied voltage

Vs = saturation voltage

Csp = depletion layer
capacitance

Giacoletto 67 analyzed the C-V relationship for abrupt junction

diodes with an arbitrary impurity distribution. Using Giacoletto's

results, the impurity-defect distribution at the silicon surface of the

MIS structure can be found. The analysis proceeds as follows:
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(43)
I _ B(VA_Vs)_:

Csp A_

where:

From Eq. (43)

W = depletion layer width

a : area

E : dielectric constant

: slope of the log-log C-V curve.

(44) VA-V s = I B__I/_

Giacoletto's expression for the impurity distribution, l(x), in the x

direction is:

d(VA-Vs)

(45) l(x) : _ dW
en i x

where:

W=x

e = electronic charge

ni = intrinsic electron density.

Substituting Eq. (44) into Eq. (45) yields:

(BAI__I/_( x 1/_-2
_ E nt "x'll_

(46) l(x) eni ) = consta ( j

-2

From Fig. 52, _ = 0.8. Therefore the impurity-defect distribution for

sample #30si is, I(x) = constant x "0°75, which is sketched in Fig. 53.

79
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Figure 53. Impurity distribution of sample #30si.
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The surface is shownto have a high impurity-defect density. This

density decreases with penetration into the bulk. It is expected that

l(x) would approach a constant atla sufficient distance from the surface

where _ = 1/2 and l(x) = cont.x i/---_-2 = const.

The above solution is dependent upon the choice of Vs which

determines the exponent _. Also the location of x : 0 is not known.

However, the above method seemsto be valid and opens the door to a means

of investigating impurity-defect distributions at a semiconductor surface.

The method may be particularly useful in examining the MIS system with a

thermally grown oxide since the oxidation process can change the surface

doping density by diffusion redistribution of the impurities and by

impurity rejection from the oxide.68 It may also be possible to determine

the depth of surface damageby correlating the voltage at which the

capacitance begins to follow the square root law relation.



",

CHAPTER IV

Experimental Techniques

A. Formation of the Polymer Film

The formation of a thin pin-hole-free insulator is essential to

successful tunneling experiments. There are several methods of forming

a thin insulator, e.g., oxide growth and vapor deposition. The parameters

of vapor deposited insulators, such as SiO, are difficult to control and

the films often contain pin holes. Grown oxides depend upon the sub-

strate material and therefore comparison of results on different sub-

strate materials is difficult. A polymer film was chosen as the insulator

for this research. It forms easily on a variety of substrates with a

great deal of control of the thickness and uniformity.

K. M. Poole 56 describes the process by which organic molecules

poiymerize in a beam of electrons. The polymerization process begins

when low energy electrons break the bonds between radicals of an organic

molecule. Both single and double-ended radicals form. The double-ended

radicals have two unsaturated bonds and are the building blocks which

join together to form long chains. The single-ended radicals have only

one unsaturated bond and cause the chains to terminate, thus impeding the

polymerization process. Fig. 54 illustrates this building and termination

diagramically.

To form a solid polymer film on a substrate consider the

diagram of Fig. 55.

81
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[ RI I_'_-L---Unsaturated bond ---_--'_ R2 I"

Single-ended radical Double-ended radical

I RI i.. I RIJ
Two single-ended radicals which by necessity

are terminated at both ends.

i R1 i* * ! R2 I** I R2 I* * I R2 I" * R2 I" * _--_*

Chain of double-ended radicals terminated at one end

by a single-ended radical.

Figure 54. The continuation and termination of radicals chains.

To form a solid polymer film on a substrate consider the

diagram of Fig. 55.

Heater-..C__

1_

Accelerating

Beam of el ectroms

arget

©
Figure 55. Electrical circuit diagram of electron beam.

First, organic molecules adsorb on the substrate target contained in a

vacuum chamber. The beam of electrons strike the substrate forming free

radicals. Many of the singlewended radicals, such as methane, are pumped

out of the vacuum chamber. The heavier double-ended radicals proceed to

form long chains, which cross link to form a solid film.

Too large an accelerating potential strips hydrogen (a single-

ended radical) off the organic molecules. The hydrogen will either

terminate the polymerization process at one end of the chain or pass out
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of the vacuum chamber. In either case an insulating film does not form

because the film is destroyed as fast as it is formed. A darkening of

the film caused by the carbon residue accompanies this film destruction.

Ennos 57 investigated sources of organic molecules in a vacuum

chamber. He found that pump oils, vacuum greases, rubber gaskets,

machined metal surfaces, and any material which had been touched by a

bare hand produced organic vapors in the vacuum which can be polymerized

by a beam of low energy electrons to form a solid insulator. Ordinary

grease removers, e.g., ether or aqueous detergent solutions, were found

to be ineffective in eliminating contamination from metals.

R. W. Christy 58 studied the formation rate of polymerized Dow

Corning 704 silicon diffusion pump oil films. These films have excellent

insulating properties. The rates of film formation depend strongly on

the partial pressure of the oil but only slightly on the total pressure.

The films grow linearly with time. The rate of film formation does not

depend upon electron energy below the self-destruction level. A plot of

formation rate, R, versus target current density, J, for three substrate

temperatures appears in Fig. 56.

Figure 56.

0 o,! O,P. o,3 oA- o.5" o.6

J (ma/cm 2 )

Rate of film formation as a function of target current (from
Christy58).
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H. T. Mann59 and R. W. Christy 52 reported electrical properties of
0

polymer films of thickness 50 to 2500 A made from Dow-Corning 704

diffusion pump oil. A process similar to that described by Mann and

Christy formed the insulator in the tunneling investigation presented

in this paper.

Construction of fifty-four (54) different metal-polymer-metal

samples developed the technique and determined the polymer film

properties. Considerable effort to understand the technology of the film

formation and the parameters which effect the film properties appear

summarized below with a description of the apparatus used and a dis-

cussion of the procedure followed in forming the polymer films.

The formation of the polymer films and the deposition of the

contacting metal electrodes occurred in a vacuum. The vacuum chamber

(Plate I) is a 24" glass bell jar pumped by an eight (8) inch diameter,

three (3) stage diffusion pump using Dow Corning 704 oil. The vacuum

pressure of 1 to 5 x 10-5 Torr required approximately one hour pumping

time. A three station evaporation apparatus (Plates II and III) allowed

the construction of metal-polymer-metal devices without opening of the

vacuum chamber. The apparatus used glass evaporation shields to prevent

the evaporant from coating the bell jar and other devices contained

within the chamber. Alignment pins provided a means of aligning the

metal masks and the substrate at the three stations. All of the machined

parts to be placed in the vacuum chamber received a mechanical polish and

a chemical etch to remove the outer skin of metal. This cleaning reduces

outgasing and prevents organic contamination. All tools were thoroughly

cleaned and white gloves were worn whenever handling of the vacuum

apparatus.
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A 902A cathoderay tube with the upper portion of the tube re-

moved served as the source of electrons for the polymerization process.

The unfocused electron beam formed a circular spot approximately 5 mm in

diameter. The focusing anode, accelerating anode, and all four deflec-

tion plates were placed at the same potential. The substrate potential

exceeded that of the anode to collect the secondary electrons. Fig. 57

shows the electrical connections of the CRT circuit.

Substrate-_ ._--_

Polymer Film _

Electron Beam ----_ /

Deflection Plates_. I_

Accelerating Anode-_ _

Focusing Anode _ '; ._
Cathode

Heater Cohtrol 300 v 50 _

Figure 57. Cathode _ay tube dircuit.

A gimbaled mount held the CRT. To align the beam of electrons, place the

phosphor face of the tube at the substrate position and evacuate the bell

jar. Turning on the tube allowed noting the relative position of the

spot on the phospher screen and an alignment substrate. With the tube

turned off, open the bell jar and adjust the CRT position. Again evacuate

the system and note the position of the spot. Continue this procedure

until alignment is achieved.

A total accelerating voltage of 350 volts produced a good

polymer film. A 400 volt potential produced a dark film which is a poor

insulator. Controlling the heater voltage held the target current

constant at 1.75 uamps. A minimum current of 0.5 _amps was required to



89

form an insulating film. Before the accelerating potentials were turned

on, the tube was preheated for 5 to 10 minutes at 9 volts to reactivate

the cathode which is contaminated by the exposure to air. Back-streaming

from the diffusion pump provides an adequate supply of diffusion pump oil

to produce a polymer film. However, placing an added source of DC 704

oil in a crucible in the vacuum chamber provides better control of the

film formation. A crucible with a surface area of 4 cm2 heated to 60°C

at a distance of 40 cm from the substrate was used as the extra oil

source. Under these conditions (350 volts, 1.75 uamps and added oil
o

source) the film formation rate was approximately 6.7A/min.

B. Physical Properties of the Polymer Film

The polymer films adhere tenaciously to the substrate. They

cannot be removed by pulling with scotch tape, by rubbing with a non-

abrasive cloth, or heating to 200°C. The polymer is not soluble in

methanol, acetone, KMER striper or boiling trichlorethylene. Since the

polymer very strongly adheres to even passively cleaned substrates, it is

believed that the adsorbed organic molecules which form a surface layer

of contamination are polymerized. If this is the case then the polymer

is held by strong chemical type forces. Thus, the polymerization would be

self-cleaning. However, the properties of the polymer would change if

very much surface contamination were encountered.
o

Plate IV is a picture of a 900A thick polymer film on a silicon

substrate taken in white light at a magnification of 8X.
0

Plate V is a picture taken through an interferometer of a 900A

thick polymer film on optically flat glass. The polymer is covered with

700A of aluminum which provides the highly reflective surface required

by the interferometer.
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0 

Plate IV. 900A polymer fi lm on a s i l icon substrate ,  white l i gh t ,  8X. 

0 0 

Plate  V .  900A polymer fi lm on opt ical ly  f l a t  glass  covered by 700A 
of aluminum. 
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The straightness of the interference fringes across the polymer is 

indicative of the uniformity of the film. 

C. Electrical Properties of the Polymer Film 

1. Construction of MIM Devices 

Experiments performed on aluminum-polymer-aluminum 

capacitors determined the electrical properties of the polymer film. 

These capacitors consisted of a vapor deposited aluminum base stripe on 

optically flat glass, a polymer film over part of the stripe, and cross 

stripe of aluminum to form the top electrode. 

finished capacitor. Top Aluminum 

Fig. 58 illustrates the 

7 Base A1 urninurn 

- 
Substrate 

Figure 58. Metal-polymer-metal capac i tor. 

The interference pattern of Plate VI (20X magnification) shows the contours 

of the capacitor. 

Plate VI. Contours of MIM capacitor. 
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The aluminum stripes are 1.2mm wide and approximately 700A thick. A 3

strand, 5 coil tungsten filament (R. D. Mathis #F4-3-O30a) I0 cm from the

substrates evaporated the aluminum. The resistance of the aluminum stripes

is only a few ohms and therefore did not affect the electrical measure-

ments. No edge currents exist since the polymer extends beyond the edges

of the aluminum. The three steps required in constructing the capacitors

were performed without opening the vacuum chamber.

2. Dielectric Constant

The dielectric constant of the polymer film was determined by

measuring the capacitance, area, and thickness of six AI- polymer - A1
o

capacitors which had thickness between I000 and 4000A and then plotting

the capacitance per unit area as a function of reciprocal polymer thickness,

Fig. 59. A least squares fit of a straight line through the points yields

a dielectric constant of 2.8 which is the same as found by Christy for

similar polymer films. The method described above averages out the

measurement errors. After determination of the dielectric constant,

capacity measurements permitted, calculation of the polymer thickness.

The dielectric strength of the polymer is about 5 X 106V/cm.

To make electrical measurements the capacitor samples were

mounted in a jig and placed in a small vacuum chamber which was pumped to

i00 microns absolute pressure. The room temperature capacity of the

samples was measured at I, I0 and I00 KHz by a GRI615A capacitan#e bridge

shown in Plate VII. Following the room temperature test, the capacity

was measured with the sample immersed in liquid nitrogen (77°K). The

results of this test are shown in Fig. 60. The capacitance is approxi-

mately independent of frequency and temperature in the ranges tested.

The capacitance was measured to three significant figures.
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The area of the capacitors was measured w i t h  a calibrated eye 

piece microscope a t  a magnification of 20X. 

aluminum s t r ipes  assured accurate measurement of the s t r ipe  w i d t h .  

The small penumbra of the 

Polaroid pictures taken through an interferometer illuminated 
0 

by a sodium lamp (A = 5900A) provided a means of determining the thickness 

of the polymer films. 

ness measurement. 

several fringes on several photographs. 

greatest  d i f f icu l ty  i n  measurement of  the thickness as shown i n  the two 

examples of Plate VIII. 

causes the 'scatter i n  the points o f  F i g .  59. 

The w i d t h  o f  the fringes prevents accurate thick- 

To average the thickness, measurement was made of 

T h i n  polymers presented the 

This error i n  the thickness determination 

Plate VIII. Interference fringes fo r  insulator thickness 
determination. 

3 .  Vol tage-Current Characteristics 

V-I curves for MIM tunneling junctions of thickness between 67 
0 

and 200A appear i n  Fig.  30 of Chapter 111. These MIM character is t ics  

serve as the basis for interpreting MIS data. MIS and MIM tunneling are 

compared i n  Chapters I1 and 111. The following discussion covers aging, 

insulator thickness a n d  temperature dependence of the MIM V-I character- 

i s t i c s .  
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Chapter III points out the strong dependence of MIM tunneling

current upon insulator thickness. Current versus thickness at room

temperature appears in Fig. 61._ In agreement with theory the current

o

decreases exponentially with thickness. For thickness greater than 125A

the current levels off and tends to become independent of thickness which

indicates the tunneling currents give way to another current mechanism

such as Schottky emission. The small difference in the V-I curves of

Fig. 62 for reversed voltage polarity indicates a slight asymmetry of the

tunneling barrier.

Stratton 18 and Simmons 14 predict the MIM tunneling current to

decrease with the square of absolute temperature. Hartman 61 and Chow62

verified this on A1 - AI203 - AI and Be - BeO - Au respectively. To

determine the temperature dependence of an A1 - polymer - A1 junction,
o

an 80A thick sample was tested from room temperature to 80oK. The sample

was placed in the inner Dewar of a double Dewar system, illustrated in

Fig. 63. The Dewar containing the sample was pumped out with a rotary

vacuum pump and then back-filled with Helium gas. This prevented the

condensation of water on the sample. The outer Dewar was then filled with

]iquid nitrogen (77°K). As the sample cooled down, the MIM current was

measured at 1.35 volts. Cooling from room temperature to 77°K required

approximately three hours. The sample temperature was measured with a

copper-constantan thermocouple with an ice water reference. The results

of this test are shown in Fig. 64. A line with a slope of 2 drawn through

the data points shows good agreement with the theoretical prediction.

I(0) was determined by plotting the tunneling current as a function of

temperature on a linear scale graph and extrapolating to T = O°K. The
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Log - Log graph of Fig. 64 is obtained by subtracting I(0) from the total

current I(T).

Vacuum -_---_

Pump _ _ 1

Helium _

Gas

Liquid Nitroge_

_J

F

<W

,_ Bridge
V

r _jj_L

i ,/ \

I

_Outer Dewar

_Inner Dewar

P Sample

Figure 63. DoubleDewar temperature apparatus.

The effects of aging are illustrated by Fig. 65. Very little

change in the V-I characteristics occurs in a vacuum (100 microns) but

aging in air reduces the exponential rise of current with voltage. No

aging of the sample occurred after three and one-half hours in liquid

nitrogen.

D. MIS Devices

1. Construction of MIS Devices

A single crystal silicon boule was cut into 20 mil wafers with

a diamond wheel. The wafers were lapped with #240, #400, and #600 grit.

The polished silicon was then etched in CP-4 for 90 seconds and stored in

air after rinsing with deionized water. To clean the silicon for con-

struction of MIS devices, the silicon was first washed with non-ionic

detergent and rinsed with deionized water and methanol. The silicon was

then boiled in trichloroethylene for 10 minutes, rinsed with running
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methanol and placed wet in the vacuum chamber. The methanol evaporated

in the vacuum of the roughing pump. When the bell jar pressure reached

the mid-lO -4 torr range, the extra oil source was heated to 60°C. The

bell jar was pumped for approximately one hour at which time the pressure

was below 5 X 10-5 torr. Storing the substrate in the vacuum before

polymerization for more than three hours allows a large deposit of

adsorbed oil to collect and a good insulating film does not form. The

electron gun was preheated for five to ten minutes before polymerization

was begun. After the polymer was formed on the silicon, three metal dot

field plates (0..85 mm2) were vapor deposited through a stainless steel

mask. The sample was allowed to stand about 15 minutes in the vacuum to

allow the deposited metal to anneal and order itself. The ordering of

the metal tends to reduce the porosity of the metal and slows down the

penetration of oxygen and water vapor after the sample is removed from

the vacuum. Gold was deposited on the back side of P-type samples to

form an ohmic contact. In-Ga paste was used as the ohmic contact metal

an N-type.

2. Testing of the MIS Devices.

After construction, the MIS devices were placed in the holder

shown in Plate X and illustrated in Fig. 66. A brass point with a small

ball of In-Ga paste on the end made contact with the field plate without

disturbing the polymer film. A small spring held the wafer in contact

with the base plate. Capacitance and current were measured by the method

described for MIM samples. Each sample was tested for photovoltaic

effects which is indicative of an incomplete insulator. Most of the

samples were electrically stable and good reproducable data was obtained.

Unstable samples were discarded.
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Figure 66. Metal-polymer-semiconductor (MIS) construction.

3. Comparison of AI-Polymer-Si and Al-SiO2-Si Capacitance Curves

Before investigating thin insulator MIS tunneling, twelve thick

insulator samples were constructed in order to determine the surface state

density which resulted with the polymer insulator. The results were

compared with grown oxide samples. Fig. 67 presents C-V data for both a

polymer and oxide insulator on 60 ohm - cm N-type silicon. The oxide was

grown with wet nitrogen. 63 The curves have the same general shape, but

there is a vast difference in the voltage required to reduce the capaci-

tance. This is partially accounted for by the difference in thickness,

dielectric constant and area of the two dielectrics. However, the

difference in the surface state density is the major cause of the voltage

offset. The surface state density is calculated by:

Ms = Q = CV ,
eA eA

where: V = applied voltage at flat band
C = capacitance at V = 0
A : field plate area
e = electronic change.
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The thick polymer samples demonstrate that an insulating film is formed

on silicon and that C - V data is consistent with the well established

MOS system, although the surface state density is a factor of 10 higher.

The surface state density of grown oxide samples is strongly dependent

upon the method of sample preparation. Surface state densities as high

as 1013 and as low as i0 II are reported by other investigators. 37 The

surface state density with polymer films lies above the average grown

oxide sample but below the maximum reported.

Fig. 68 gives the C-V curve for a P-type silicon sample. This

is also consistent with published MOS data.
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CHAPTER V

Summary of Conclusions and Recommendations
for Further Research

A. Conclusions

This research investigated the general properties of tunneling

between silicon and a metal separated by a thin polymer insulator. This

section summarizes the various conclusions which appear throughout the

text of this paper.

Surface states have been shown to play an important role in the

entire MIS tunneling process. They provide an abundance of states which

give the silicon a metallic-like surface. The voltage-current proper-

ties of the MIS tunneling are best described in terms of the electric

field within the insulator which is controlled by the location of the

terminating charge within the silicon. At low applied voltage the

ionized surface states terminate the electric field lines and cause the

insulator field to increase as in the case of MIM tunneling. When the

surface states are fully ionized, an increase in the applied voltage

creates either an accumulation or depletion layer on the silicon surface

depending upon the conductivity type of the silicon and the polarity of

the applied voltage. When the accumulation layer forms, then the

insulator field and the tunneling current increase as before since the

accumulated charge collects at the silicon surface. When a depletion

layer forms, then the electric field terminates on dopant states within

the silicon bulk. As a result the insulator field and the tunneling

current level off.

109
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To describe MIS tunneling, Stratton's MIM tunneling equation

requires modifications which take into account the forbidden band of the

silicon and the conservation of momentum of the transistion. These

modifications do not change the form of the MIM equation but decrease the

constants and replace the independent variable, VA, by a reduced voltage,

VA-V G•

Experimentally, the MIS tunneling current increases with

applied voltage in an exponential manner as predicted by the modified

Stratton equation. However, an asymmetric current saturation occurs which

is dependent upon the polarity of the applied voltage and the conductivity

type of the silicon. Plotting the voltage-current characteristics on a

semi-logarithmic graph demonstrates the exponential nature of the tunnel-

ing current and indicates that the current saturation is a separate

mechanism from that of tunneling. This mechanism has been shown to be

the penetration of the electric field into the silicon bulk which occurs

when the surface states are exhausted and a depletion layer forms. The

establishment of the basic role of the surface states is of major impor-

tance for it not only explains current saturation, but also provides a

means of examining the surface states and allows determination of the

effect of variation of the physical parameters.

Application of Gauss' law determines the effect of insulator

thickness and work function of the field plate metal upon the saturated

current level. The saturated current level is independent of the

insulator thickness, but exponentially dependent upon the field plate

work function. Temperature dependence does not lend itself to rigorous

analysis, but the reduction of tunnel efficiency is seen to be the major

temperature effect.
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B. Recommendations

This research generated several interesting ideas which seem

worthy of further consideration. These ideas are:

(1) Study surface states with the tunneling saturation method.

(2) Study tunneling into other single crystal and vapor

deposited semiconductors.

(3) Study tunneling in semiconductor-insulator-semiconductor

structures (SIS).

(4) Determine the relative work function of metals and semi-

conductors with the tunneling saturation.

(5) Construct and investigate a triode with a MIMS structure.

The MIM forms the emitter and the MS forms the collector.

(6) Investigate electroluminescence in CdS and GaAs using the

MIS structure.
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A resistance bridge simultaneously measured the tunneling

current and voltage of the samples. An analysis of the bridge is given

below.

The bridge is balanced at open circuit. The resistance of volt-

meter 2 is one arm of the bridge. When an unknown resistance is placed in

the circuit, the bridge is unbalanced. The voltage, across the bridge, VI -

V2, is proportional to the current through the unknown resistance and the

voltage, V2, is the voltage applied across the resistance.

L,
331_ 1

V3

v, A-

<

gA " conductance of ammeter

gv - conductance of voltmeter

gs - conductance of sample

VB - Voltage supply

Figure 65. Circuit of resistance bridge
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The three node equations are:

(1) (V I - V3) ga + (Vl - V2) ga + Vzgb = 0

(2) (V2 - V3) gc + V2gs + V2 gv - (V2 - Vl) gA = 0

(3) v3 = vB.

Combining and solving for VI and V2 yields

gag2 + gAgc

(4) VI = VB 2 Where g2 = gc + gs + gv - gA
glg2 + gA

(5)
gcgl + gAga

V2 = VB 2

glg2 + gA

and gl = ga + gA + gb

The voltage across the bridge then is:

(6) Vl-V2=V4: V B _gag2 l gAgc - gcgz l gage_ I ,_

| ]2Lglg2 + gA

Since the bridge is balance at open circuit,

(7) ga/gb : gc/g v.

Hence

(8) V4 = VB
gags

glg2+gA 2

The current of the unknown resistance is

fgcgs -gA____l
(9) I = V2g s = VB gs

glg2 + gA ]

and

(10) VB = I s

2

glg2 + gA
gs(gcgl " gAga) •

Substituting (10) into (8) gives the bridge voltage in terms of the

unknown current:
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(11) V4 = gals
gcg I - gAg a

Solving for Is,

(12) Is= gcgl - gAga V4= KV4
ga

Where K = gcgl - gAga
ga

Therefore it is shown that V4 is proportion to Is .

For the circuit of Fig. 65,

K : 11.3 uA/volt.

The bridge was tested with known resistances of valve from 1Ok to 680 meg

ohms. The accuracy was better than 5% on all resistances. The leakage

resistance of the bridge varied from day to day, but was of the order of

1000 meg ohms.
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Calculation of Stratton's Equation

2_CIokT
I = Io exp (-b12V2)

Sin (xClokT)

to Fit MIMPolymer Sample#53S
C10 = 16.4

sinh (C10 V)
2 b12 1.0

Io : O.088mpA

V V2 exp(-b12V2) 8.2V sinh(8.2V) e-b12 V2

sinh(8.2V)

0.12

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

volts 0.0144 0.99

O. 04 O. 96

0.09 0.91

O. 16 O. 85

0.25 0.77

0.36 0.70

0.49 0.61

O. 64 O. 53

0.81 0.44

I. O0 O. 37

1.21 0.30

I. 44 O. 24

1.69 0.18

1.96 0.14

2.25 O. 105

2.56 0.077

2.89 0.055

0.985 1.15 1.14

1.64 2.48 2.38

2.46 5.81 5.28

3.27 13.05 11.1

4.09 30.0 23.1

4.91 68.0 47.6

5.73 155 94.5

6.55 350 185

7'37 800 352

8.20 1,800 665

9.05 4,000 1,200

9.85 9.500 2,280

10.6 20,000 3,600

11.5 49,000 6,850

12.3 110,000 11,600

13.1 244,000 18,000

13.9 540,000 29,700

2.74x10-1mpA

5.72

1.27x10 °

2.67

5.55

1.14x101

2.27

4.44

8.46

1.60xlO 2

2.88

5.48

8.65

1.65x103

2.79

4.52

7.15
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Calculation of Stratton's Modified Equation to Fit N-Type MIS Polymer

Sample #30si

VG : 0.2 volts, C10 : 14, b12 = 0.9, I o = 0.04 mpA

sinh 7

V V-V G (9)(V.Vg)2 e-bl2(V-VG )2 7(_VG ) (V_VG)

e-( )
sinh( ) I

0.3 0.1 0.0009 1.00 0.7

0.5 0.3 0.081 0.92 2.1

0°7 0.5 0.225 0.80 3.5

0.9 0.7 0.44 0.64 4.9

1.2 1.0 0.90 0.41 7.0

1.5 1.3 1.52 0.22 9.1

1.8 1.6 2.50 0.082 11.2

2.1 1.9 3.25 0.039 13.3

2.4 2.3 4.35 0.013 15.4

2.7 2.5 5.60 0.0037 17.5

0.76 0.76 7.6xlO'2mpA

4.0 3.7 3.7x10 -1

16 12.8 1.28x10 °

67 43 4.3

548 225 2.25xi01

4,500 990 9.9

37,000 3,050 3.05xi02

300,000 11,700 1.17x103

2,420,000 31,400 3.14

19,800,000 73,500 7.35
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